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Abstract

When planning experimental research, determining an appropriate sample size and using

suitable statistical models are crucial for robust and informative results. The recent replication

crisis underlines the need for more rigorous statistical methodology and adequately powered

designs. Generalized linear mixed models (GLMMs) offer a flexible statistical framework to

analyze experimental data with complex (e.g., dependent and hierarchical) data structures.

However, available methods and software for a priori sample size planning for GLMMs are

often limited to specific designs. Tailored data simulation approaches offer a more flexible

alternative. Based on a practical case study where we focus on a binomial GLMM with two

random intercepts and discrete predictor variables, the current tutorial equips researchers with

a step-by-step guide and corresponding code for conducting tailored a priori sample size

planning with GLMMs. We not only focus on power analysis but also explain how to use the

precision of parameter estimates to determine appropriate sample sizes. We conclude with an

outlook on the increasing importance of simulation-based sample size planning.

Keywords: tutorial, sample size planning, generalized linear mixed model, power

analysis, precision, data simulation
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A Tutorial on Tailored Simulation-Based Sample Size Planning for Experimental

Designs with Generalized Linear Mixed Models

Introduction

When planning experimental research, it is essential to determine an appropriate

sample size and use appropriate statistical models to analyze the data to ensure that the results

are robust and informative (Lakens, 2022a). The recent replication crisis in Psychology and

other disciplines has illustrated many challenges surrounding the reproducibility and reliability

of study findings (Yarkoni, 2022). As a result, there is a growing need for more rigorous

statistical methodology and the adoption of adequately powered experimental designs.

Multiple easy-to-use software solutions exist for simple statistical models and experimental

designs (Champely, 2020; Lakens & Caldwell, 2021). A priori sample size planning for more

complex research designs such as flexible generalized linear mixed models (GLMM) is not

covered by standard software solutions. Researchers willing to use this framework will need to

use data simulation. In the present work, we provide a tutorial on how to determine adequate

sample sizes by performing tailored simulation-based sample size planning for GLMMs. After

introducing some theoretical background on sample size planning, we review existing software

solutions in R and discuss under which circumstances tailored data simulations are necessary.

We proceed by describing the relevant steps and decisions involved in tailored data simulation,

illustrated in a case study where we focus on a binomial GLMM with two random intercepts

and discrete predictor variables.

To benefit most of this tutorial paper, we recommend readers to familiarize themselves

with basic statistical concepts like hypothesis tests (HTs) and their statistical power as well as

confidence intervals (CIs) and their precision (Kumle et al., 2021; Lakens, 2022b; Riesthuis,

2024). Some knowledge of causal inference is beneficial but not necessary (Deffner et al.,

2022; Lundberg et al., 2021). In addition, readers should have an understanding of how to

conduct statistical analyses with R (Wickham et al., 2023) and how to simulate data (DeBruine

& Barr, 2021; Hallgren, 2013; Lee et al., 2020). For data simulation, we use functions from

the tidyverse (Wickham et al., 2019) and the faux package (DeBruine, 2023). Finally, readers

should have a basic understanding of regression modeling and GLMMs (Brown, 2021). In this
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tutorial, we simulate data by manually specifying the model equation of a GLMM that

represents our assumed data-generating process (DeBruine & Barr, 2021). It is not necessary

to understand the technical details of how GLMMs are estimated. However, it is crucial to

understand the structure of a basic GLMM (e.g., logistic regression with random intercepts)

and how the model assumes that the dependent variable’s values are determined by the

predictor variables and the random effects.

Theoretical background

Planning for statistical power or precision

Conducting research with insufficiently large sample sizes can have many negative

consequences (Button et al., 2013). First, experiments may yield inconclusive or misleading

results, hindering the accumulation of knowledge. Second, studies that are doomed never to

find a postulated effect waste resources by consuming time, effort, and funding. For these

reasons, many journals and funding bodies now require a sample size justification in study

protocols and grant proposals, recognizing its relevance in ensuring robust and meaningful

findings. While sample sizes can be justified with resource constraints or general heuristics,

statistical arguments based on power or precision are the gold standard (Lakens, 2022a).

Most empirical studies in psychology and other social sciences apply hypothesis

testing. Consequently, the dominant approach for determining an adequate sample size is

based on power analysis (i.e., planning for power) (Lakens, 2022a; Maxwell et al., 2008).

Statistical power is defined as the probability that a HT has a significant p-value when

analyzing repeated samples from a population with a true effect of some pre-specified size

(Cohen, 1992). Less formally, power is described as the probability that a HT correctly rejects

the null hypothesis when the alternative hypothesis is true. If the sample size (i.e., the number

of participants and/or stimuli) is insufficient to detect the effects or relationships being

investigated with high probability, the study is considered “underpowered”. When planning

for power, a target is set for the statistical power of a HT of interest. Assuming an effect size of

interest and a desired significance level, a minimum sample size can be determined that, on

average, would guarantee reaching this target. The most prominent heuristic is to target a

power of 1 − 𝛽 = 0.8 in combination with a type I error rate of 𝛼 = 0.05 (Lakens, 2022a).
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However, depending on the research goals or resource constraints, there are often good reasons

to move away from this standard (Benjamin et al., 2017; Lakens, Adolfi, et al., 2018).1

In contrast to power analysis, sample size planning can also be based on the precision

of parameter estimates (i.e., planning for precision or planning for accuracy) (Lakens, 2022a;

Maxwell et al., 2008). Not all research questions are best answered by hypothesis testing. It

has been argued that basic research rarely requires discrete decisions on whether some effect

has been “discovered” and should thus shift from hypothesis testing towards an estimation

framework (Cumming, 2014; Kruschke & Liddell, 2018; McElreath, 2020), although this view

is not without critique (Uygun Tunç et al., 2023). When no HTs are conducted, power analysis

is not relevant for sample size planning. In the precision framework, the target quantity

commonly used for sample size planning is the expected width of a CI (Kelley & Rausch,

2006; Lakens, 2022a; Maxwell et al., 2008). A CI with a confidence level of 0.95 provides the

smallest interval with the property that 95% of individual CIs would include the true quantity

of interest upon repeated sampling. Thus, a narrow CI with fewer plausible values for the

quantity of interest is more informative about the size of the true effect than a wide CI. Apart

from the confidence level, the width of a CI depends on the sample size. Because bigger

samples carry more information, they lead to smaller CIs. When planning for precision, a

target can be set for the expected width of a CI of interest. Assuming some effect size of

interest and a certain confidence level, a minimum sample size can be determined that would

guarantee reaching the targeted expected width. Because planning for precision is still rare,

there are no common heuristics for choosing the desired width of the CI (Lakens, 2022a).

Generalized linear mixed models (GLMMs)

As study designs become more complex, psychological researchers require more

sophisticated statistical models to capture their nuanced relationships and grouping structures

(Yarkoni, 2022). GLMMs (also called multilevel models) are gaining popularity because they

offer great flexibility when applied carefully (Brown, 2021; Matuschek et al., 2017; Meteyard

1 For example, the Social Sciences Replication Project targeted a power of 0.90 to safeguard against biased effect

sizes in the original studies (Camerer et al., 2018), and Many Labs 5 even targeted a power of 0.95 (Ebersole et

al., 2020).
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& Davies, 2020). GLMMs are an extension of LMMs (Linear Mixed Models), which are, in

turn, extensions of linear regression models that account for correlated data, including

hierarchical structures (Bolker, 2015; Fahrmeir et al., 2021). In this context, correlated data

means that the value in the outcome variable for one observation may be related to the value of

another observation in a systematic way that is not already accounted for by the usual (fixed)

predictor variables (e.g., the age of participants). This correlation can arise for various

reasons: For instance, responses to some stimuli from some participants might be more similar

because the same person was measured multiple times (repeated measurements), participants

belong to the same group (clustering), or participants responded to the same stimulus (stimulus

effects). Thus, modeling such correlations is important whenever the data has a clear structure,

while the grouping variables can be hierarchically nested (e.g., grouping variables students

and schools: each student belongs to exactly one school) or cross-classified (e.g., grouping

variables students and math exercises: each student is presented with several math exercises).

LMMs are used when the outcome variable is continuous and follows a normal distribution

(after conditioning on all predictor variables). They allow for the modeling of fixed effects,

which capture the relationships between the usual predictors and the outcome, as well as

random effects, which account for the different types of correlation structure and grouping

effects. Random effects are typically assumed to follow a normal distribution with a mean of

zero and a variance that quantifies the heterogeneity across groups. Correlated random effects

can be assumed in models that contain both random intercepts and random slopes. GLMMs

extend the LMM framework to accommodate non-normally distributed continuous and

categorical outcome variables. GLMMs involve a link function that connects the linear

combination of predictor variables to the expected value of the outcome variable. The link

function allows for modeling the relationship between predictors and the outcome in a

non-linear way that is appropriate for the specific distribution family of the outcome variable.

Simulation-based sample size planning with GLMMs

To our knowledge, existing approaches for sample size planning for GLMMs have

exclusively focused on planning for power. In Table 1, we review available software packages

that can be used to perform power analysis for multilevel models in R [Version 4.3.3; R Core
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Team (2024)]. Power analysis methods can be categorized into formula-based,

summary-statistics-based and simulation-based methods (Murayama et al., 2022).

Formula-based methods rely on exact formulas to calculate power directly.

Summary-statistics-based methods use statistical theory to approximate power based on

formula-based methods developed for simple t-tests. Simulation-based methods rely on

repeatedly simulating data with a known true effect size and estimating power empirically, that

is what percentage of simulated datasets produces a significant p-value. Available

formula-based and summary-statistics-based software packages for multilevel models often do

not include GLMMs or are limited to simple designs (Murayama et al., 2022; Westfall et al.,

2014), making it necessary to build data simulations tailored specifically to the study design.

A number of tutorials have been published describing how to perform such simulation-based

power analysis for multilevel models (Arend & Schäfer, 2019; Brysbaert & Stevens, 2018;

DeBruine & Barr, 2021; Green & MacLeod, 2016; Johnson et al., 2015; Kain et al., 2015;

Kumle et al., 2021; Lafit et al., 2021; Zimmer et al., 2023). However, many of these tutorials

focus on LMMs and the most common study designs (see Kumle et al., 2021 for a tutorial that

also covers more advanced settings). This narrow focus provides limited guidance for

researchers using more complex study designs, especially when little prior knowledge about

plausible effect sizes is available (see the discussion in Kumle et al., 2021). Simulation-based

power analysis with GLMMs requires making a range of assumptions about the model

structure that should align with the characteristics of the data being analyzed. Existing

tutorials often rely on heuristics for specifying variance components (e.g., the standard

deviation of random intercepts) or assume that results from meta-analyses or data from pilot

studies are available to determine plausible values for all model parameters. However, in

practice, knowledge about those parameters from prior studies is often limited, which makes

specifying assumptions a practical challenge (see the discussion in Maxwell et al. (2008) and

Kumle et al. (2021)). We will discuss a number of strategies on how to specify model

parameters for application-specific, tailored data simulations in a later chapter.
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Table 1

Table 1. Overview of software packages for power analysis for (generalized) linear mixed

models in R.

Package name Summary
GUI

available

GLMM

support
Design limitations Reference

glmmrBase

Formula- and

simulation-based power

analysis; non-linear fixed

effects and flexible

covariance functions

no yes none
Watson

(2023)

longpower

Formula-based power

analysis; focus on

longitudinal data

yes no

limited set of study

designs with two

levels

Iddi &

Donohue

(2022)

mixedpower

Simulation-based power

analysis; based on ‘lme4’

package

no yes none
Kumle et al.

(2021)

mlmpower

Simulation-based power

analysis; missing data

mechanisms

no no limited to two levels
Enders et al.

(2023)

pamm

Simulation-based power

analysis; based on ‘lme4’

package

no no none
Martin et al.

(2011)

pass.lme

Formula-based power

analysis; limited

documentation

no no none Yu (2019)

https://atrihub.shinyapps.io/power/
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Package name Summary
GUI

available

GLMM

support
Design limitations Reference

PowerAnalysisIL

Simulation-based power

analysis; focus on

longitudinal data

yes no

limited set of study

designs with two

levels

Lafit et al.

(2021)

powerlmm

Simulation-based power

analysis; missing data

mechanisms; focus on

longitudinal data

yes no

limited set of study

designs with two or

three levels

Magnusson et

al. (2018)

simglm

Simulation-based power

analysis; missing data

mechanisms

yes yes
limited to two or

three levels

LeBeau

(2019)

simr

Simulation-based power

analysis; based on ‘lme4’

package

no yes none

Green &

MacLeod

(2016)

summary_statistics

based_power

Summary-statistics-based

power analysis; based on

‘pwr’ package

yes yes

limited set of study

designs with two

levels

Murayama et

al. (2022)

WebPower

Formula-based power

analysis; based on

‘longpower’ package; focus

on longitudinal data

yes no

limited set of study

designs with two

levels

Zhang &

Yuan (2018)

Note. GUI available = whether a graphical user interface is provided (usually a Shiny app that

is available online or can be downloaded to run locally), GLMM support = whether power

analysis can be performed for generalized linear mixed model (otherwise only linear mixed

https://github.com/ginettelafit/PowerAnalysisIL?tab=readme-ov-file#shiny-app-and-r-package-to-perform-power-analysis-to-select-the-number-of-participants-in-intensive-longitudinal-studies
https://github.com/rpsychologist/powerlmm?tab=readme-ov-file#launch-interactive-web-application
https://simglm.brandonlebeau.org/reference/run_shiny.html
https://koumurayama.shinyapps.io/summary_statistics_based_power/
https://webpower.psychstat.org/wiki/start
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models are supported), Design limitations = whether only a limited selection of study designs

can be specified (otherwise arbitrary designs within the model class are supported).

Reasons to use tailored data simulation

Performing tailored simulation-based sample size planning is more complicated and

time-consuming than using the existing software tools outlined in Table 1. Circumstances

under which tailored simulation-based sample size planning is necessary include 1) complex

study designs, 2) complex statistical hypotheses, 3) planning for precision, and 4) lack of prior

studies or pilot data.

First, requirements of real-world studies are often more complex than the simplified

designs assumed by many user-friendly software packages for sample size planning. One

frequent issue in applied data analysis is missing data (Little & Rubin, 2014). Missings can be

completely random (e.g., an electronic measurement device randomly failed for technical

reasons), depend on some attributes also measured in the dataset (e.g., older subjects refuse

answering a question on income), or be caused by the measured attribute itself (e.g., wealthy

people refuse to report their income). Moreover, many experimental designs contain

conditions in which values of the predictor variables are missing by design. This can make

data analysis more complicated because predictors have to be coded in specific ways that

prevent the estimated GLMM from becoming unidentified. Whether missing data has an effect

on the sample size planning depends on our theoretical assumptions on how the missingness is

caused. However, it is often challenging to decide whether missing data can be safely ignored

in the data analysis and sample size planning process based on a merely theoretical approach

(Gomila & Clark, 2022). Tailored simulation-based approaches offer the possibility to include

the assumed process of how data become missing in the data simulation, thereby determining

the required sample size based on simulated datasets that contain missing values (for example,

see Lane & Hennes, 2018). As a byproduct, the simulated datasets can also be used to test

whether the intended data analysis provides the expected (unbiased) results, despite the

missing data. Although GLMMs can handle a large variety of outcome variables, researchers

are becoming increasingly aware that many datasets might profit from even more sophisticated

models. Common examples are zero-inflated outcomes, censoring, and nonlinear predictor
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effects that can be modeled with the R packages glmmTMB (Brooks et al., 2017) or brms

(Bürkner, 2018). Tailored simulation-based approaches do not share the same limitations as

the existing software solutions for power analysis that focus exclusively on GLMMs. As long

as there is a software package available to estimate the model of interest, it is always possible

to perform tailored simulation-based sample size planning.

Second, the most common hypotheses tested in psychological research are of the type

𝐻0 : 𝛽 = 0, where 𝛽 is a slope or intercept of a regression model. However, many research

questions in psychology actually require testing more complex statistical hypotheses. In the

new era of preregistration and registered reports (Chambers & Tzavella, 2022), most research

questions should be tested with directed hypotheses because good theories at least postulate

whether some psychological effect of interest is positive or negative. Even better theories

should be able to specify the smallest effect sizes of interest (SESOI) that must be exceeded if

the effect has any practical relevance (Lakens, Scheel, et al., 2018). This might require a test

such as 𝐻0 : 𝛽 ≤ 0.1. More elaborate research questions often require testing hypotheses that

consist of a combination of model parameters, for example, testing simple slopes (Preacher et

al., 2006) with a hypothesis such as 𝐻0 : 𝛽0 + 𝛽1 ≤ 0. If the research question consists only of

a single hypothesis of this sort, it might be possible to reduce the hypothesis to a single

regression coefficient by clever coding and/or centering of predictor variables. However,

research questions often consist of combined hypotheses that consist of more than one separate

statistical hypothesis (for a tutorial on contrast analysis in GLMMs, see Schad et al., 2020).

For example, a combined null hypothesis 𝐻0 might consist of two single null hypotheses

𝐻01 : 𝛽1 ≤ 0 and 𝐻02 : 𝛽0 + 𝛽1 ≤ 0. For some research questions, the combined null

hypothesis 𝐻0 would be rejected if both 𝐻01 AND 𝐻02 are rejected. For other research

questions, the combined null hypothesis 𝐻0 would be rejected if 𝐻01 OR 𝐻02 OR both are

rejected. If the global hypothesis 𝐻0 is combined with OR, the p-values of the single

hypotheses must be corrected for multiple testing to avoid 𝛼-inflation for the global hypothesis

(Dmitrienko & D’Agostino, 2013). However, if the global hypothesis 𝐻0 is combined with

AND, a correction for multiple testing is not necessary but rather a mistake that unnecessarily

reduces the power of the global HT. None of the software packages for sample size planning in
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Table 1 can handle combined hypotheses and only some can handle directed hypotheses. In

contrast, our case study will demonstrate how we can test directed combined hypotheses with

tailored simulation-based sample size planning.

Third, all available software packages for sample size planning with GLMMs are based

on power analysis and do not support planning for precision. Thus, researchers that want to

apply an estimation strategy instead of testing statistical hypotheses (Cumming, 2014),

currently cannot use the software packages outlined in Table 1. However, tailored

simulation-based sample size planning can easily handle the planning for precision approach

(Maxwell et al., 2008). The only change in procedure is that instead of computing HTs for

each simulated dataset and estimating statistical power across repetitions, CIs are computed for

each simulated dataset, and their expected width is estimated.

Fourth, all frameworks for sample size planning require the user to make assumptions

about the expected effect size. Assuming the true effect is of this size (or greater), one can

compute the (minimum) power of a HT or the (maximum) expected width of a CI. Existing

software packages for sample size planning for GLMMs usually require to provide the

assumed effect in the unit of some standardized measure of effect size. When the researcher

has access to similar studies or pilot data, providing such standardized effect sizes is feasible.

However, choosing effect sizes based on small pilot studies is generally not recommended, as

those estimates can be heavily biased (Albers & Lakens, 2018; Lakens, 2022a). Providing an

informed standardized effect size can be an almost impossible challenge when no prior studies

of pilot data are available. This problem is further exacerbated by the fact that GLMMs are so

flexible that general heuristics of what should be considered a small effect do not exist or are

difficult to defend. In the absence of prior evidence, using domain knowledge to construct a

tailored data simulation is considered the best solution to determine plausible effect sizes (see

scenario 3 in Kumle et al., 2021). It would be possible to use these tailored simulations to

compute standardized effect sizes that could then be inserted in existing software packages for

sample size planning. However, we would argue that when tailored data simulations are

necessary to determine effect sizes anyway, performing the whole sample size planning in a

customized way is preferred over using the existing software packages.
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General steps in tailored simulation-based sample size planning

Although the details differ for each study, every tailored simulation-based sample size

planning requires a series of steps and decisions. We will introduce each step in a theoretical

section, followed by the practical application based on a case study. To keep the tutorial

manageable, we focus on a binomial GLMM with two random intercepts and discrete

predictor variables. All code in this manuscript and simulation results are available on the

Open Science Framework (https://osf.io/dhwf4/) and on our tutorial website

(https://timo-ko.github.io/glmm_simulation_tutorial/).

Step 1: Define the estimand

THEORY

The first step in every research process is a clear definition of the theoretical estimand

(Lundberg et al., 2021), i.e. the theoretical quantity which is necessary to answer a specific

research question. The estimand consists of a quantity that can be described for each unit

under investigation and a clear definition of the target population, for which the quantity is of

interest. For example, an estimand might be the probability that a clinical psychologist makes

the correct diagnosis for a psychiatric patient with major depression, averaged across all

clinical psychologists and depressed patients in psychiatric institutions in a given country.

The estimand should always be defined outside of any statistical model, because there

are usually a range of statistical methods that can be used to estimate the same estimand,

depending on the study design (e.g., a randomized experiment) that will produce the observed

data in the planned study. For many common research questions in psychology, it is possible to

express the estimand as a statistical quantity that can be estimated with a regression model, for

example a single 𝛽 coefficient. However, this is not possible for all estimands, which is why

the literature discusses many estimation strategies beyond regression (Deffner et al., 2022;

Lundberg et al., 2021).

PRACTICE

In the present case study, we consider the effectiveness of feedback provided by an

artificial intelligence (AI) embedded in a clinical decision support system. The context is a

clinical setting, where task experts (i.e., radiologists), and non-expert (i.e., medical students)

https://osf.io/dhwf4/
https://timo-ko.github.io/glmm_simulation_tutorial/
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must detect bleedings based on head scans from computer tomography (CT). The AI model

can provide initial diagnostic advice, which can be used as guidance by the humans who are

required to make the final diagnostic decision. The research goal is to validate the

effectiveness of the AI-enabled advice. We consider the AI-enabled advice effective, if the

following pattern holds:

We expect that for BOTH radiologists and medical students, correct AI advice leads to

a higher probability of accurately diagnosing a CT scan compared to no AI advice presented,

AND, we expect that for BOTH task experts and non-experts, incorrect advice leads to a lower

probability of accurately diagnosing a CT scan compared to no advice presented.

It becomes clear that our estimand consists of four comparisons between experimental

conditions (Lundberg et al., 2021). However, the verbal description is still somewhat vague,

which is why we try to give a more precise expression for each comparison:

𝑃(correct diagnosis|correct advice, average expert, average scan)

− 𝑃(correct diagnosis|no advice, average expert, average scan)

𝑃(correct diagnosis|no advice, average expert, average scan)

− 𝑃(correct diagnosis|incorrect advice, average expert, average scan)

𝑃(correct diagnosis|correct advice, average student, average scan)

− 𝑃(correct diagnosis|no advice, average student, average scan)

𝑃(correct diagnosis|no advice, average student, average scan)

− 𝑃(correct diagnosis|incorrect advice, average student, average scan)

For example, the first expression is concerned with the difference between the probability that

a correct diagnosis is made if correct AI advice is presented and the probability that a correct

diagnosis is made if no AI advice is presented. This contrast is quantified for a hypothetical

typical expert and a typical scan, where typical is usually defined as an average score on all

attributes of the expert or scan.2 To complete our definition of the estimand, we have to define

2 Note that a different estimand would be the so-called average treatment effect (ATE). For the ATE, the
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our target population that consists of persons, stimuli, and AI advice: With respect to persons,

we are only interested in experts (i.e., radiologists) and non-experts (i.e., medical students).

With respect to stimuli, we are only interested in the head CT scans made from subjects that

do or do not suffer from intracerebral hemorrhage. Lastly, we are only interested in AI advice

given by a specific AI-enabled system.

Although the estimand is initially defined outside of a statistical model, it is only useful

if we find a way to estimate it based on observed data. For our exemplary research question, it

is possible to construct an experimental study where all participants are confronted with the

same set of head CT scans, but the kind of AI advice given for each scan is randomly assigned

within participants. This random intervention allows us to produce an empirical estimate of

our estimand, although, in reality, each person receives only one kind of AI advice (correct

advice, incorrect advice, no advice at all) for each scan. We will see later how each of the

probability expressions in our estimand can be modeled with the same GLMM. Estimating this

GLMM based on the data observed in our planned study will produce an estimate for each

probability, and these estimates can then be combined to compute an estimate for each of the

four probability contrasts. For pedagogical reasons, we will skip the concrete definition of our

estimate until we have discussed how to simulate data based on a concrete GLMM in the next

section.

Step 2: Simulate the data-generating process

THEORY

When the estimand has been defined, the next step in the research process is to write

code that simulates the data-generating process of the planned study. This requires specifying

a generative process for all predictor variables used in the final data analysis. Realistic

assumptions can be quite challenging for observational studies or continuous predictor

variables, which is beyond the scope of this tutorial. However, this step is much easier for

experimental studies with only categorical predictor variables because the distribution of

predictors is fixed by the study design. When all predictor variables have been simulated, one

probability contrast is defined for each combination of expert and scan, and then these contrasts are averaged

across all experts and scans from the target population (Lundberg et al., 2021).
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can use the structure of a suitable GLMM to simulate the dependent variable. To simulate the

GLMM, one requires plausible values for all model parameters. We will discuss strategies on

how these values can be obtained later. Because we have full control over the data-generating

process in a tailored simulation, it is possible to model specific aspects of the planned study,

like data missing by design or assuming that some subjects might drop out. The quality of the

results of the sample size planning crucially depends on the plausibility of the simulated

data-generating process. If the simulated data generating process is less complex than the true

process, one can expect that sample size planning underestimates the required sample size and

the planned analysis has inflated type I error rates (Matuschek et al., 2017). However,

Matuschek et al. (2017) have also shown in simulations with LMMs that while fitting maximal

models (i.e. that include all possible random effects) safeguards against inflated type I error

rates, this can lead to a great loss in power if the variance in the random effects is actually

small. Thus, we argue that even a simplified data-generating process (e.g., only a small

number of interaction effects; only random intercepts, and no random slopes; assuming that

data is missing completely at random) that is only plausible under idealized circumstances, can

yield informative results and is preferred over performing no systematic sample size planning.

PRACTICE

In our case study, radiologists and students review a series of head CT scans to assess

the presence of a bleeding. An AI model provides initial diagnostic advice to assist their

decision-making. In the control condition, no AI advice is presented. When AI advice is

given, this advice can be either correct or incorrect. The type of advice (no advice, incorrect

advice, correct advice) is randomized within subjects across CT scans. After reviewing a CT

scan, participants deliver a diagnosis (bleeding or no bleeding), which may be either accurate

or inaccurate. This experimental design introduces some missing values by design since the

advice is neither correct nor incorrect when no advice is present, which must be taken into

account when simulating and analyzing the data. In this example, recruiting task experts (i.e.,

radiologists) is more challenging due to their limited availability, while non-experts (i.e.,

students) are more readily accessible. The goal of simulation-based sample size planning is to

determine how many task experts and non-experts must be recruited to achieve sufficient
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statistical power or precision in the planned experiment.

Our specific GLMM. In a GLMM, the expected value of the dependent variable 𝑌

conditioned on the vector of predictor variables X and random effects U, transformed by a link

function 𝑔() is modeled as a linear combination 𝜂 of the predictor variables X, the random

effects U, and the model parameters 𝛽 (Fahrmeir et al., 2021):

𝑔(𝐸 (𝑌 |X = x,U = u)) = 𝜂

Equivalently, the conditional expected value is modeled as the linear combination 𝜂,

transformed by the inverse link function 𝑔−1():

𝐸 (𝑌 |X = x,U = u) = 𝑔−1(𝜂)

If the dependent variable (i.e., diagnostic decision) 𝑌 is a binary variable with values 0 (i.e.,

inaccurate), or 1 (i.e., accurate), the conditional expected value is equivalent to the probability:

𝑃𝑠𝑖 := 𝑃(𝑌 = 1|X = x,U = u)

In our case study, 𝑃𝑠𝑖 is the conditional probability that subject 𝑠 gives the correct response to

item (i.e., CT scan) 𝑖.

In such a setting, we model this probability as

𝑃𝑠𝑖 = inverse_logit(𝜂𝑠𝑖)

with the inverse-logit link 𝑔−1(𝜂𝑠𝑖) = 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑙𝑜𝑔𝑖𝑡 (𝜂𝑠𝑖) = 𝑒𝑥𝑝(𝜂𝑠𝑖)
1+𝑒𝑥𝑝(𝜂𝑠𝑖) or equivalently

logit(𝑃𝑠𝑖) = 𝜂𝑠𝑖

with the logit link 𝑔(𝑃𝑠𝑖) = logit(𝑃𝑠𝑖) = ln( 𝑃𝑠𝑖

1−𝑃𝑠𝑖
).

In our case study, the probability of making an accurate diagnostic decision is assumed

to depend on the predictors:

• 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑖: whether subject 𝑠 was presented with AI advice (1) or not (0) when

asked to assess item 𝑖

• 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖: whether this advice was correct (1) or not (0)
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• 𝑒𝑥𝑝𝑒𝑟𝑡𝑠: whether subject 𝑠 was a task expert (1) or not (0)

and the random effects:

• 𝑢0𝑠: the deviation of subject 𝑠 from the average ability to solve an item (i.e., CT scan)

with average difficulty; assumed to be distributed as 𝑢0𝑠 ∼ 𝑁 (0, 𝜎2
𝑆 )

• 𝑢0𝑖: the deviation of item (i.e., CT scan) 𝑖 from the average difficulty to be solved by a

person with average ability; assumed to be distributed as 𝑢0𝑖 ∼ 𝑁 (0, 𝜎2
𝐼 )

In total, we assume the model

logit[𝑃𝑠𝑖] = (𝛽0 + 𝑢0𝑠 + 𝑢0𝑖)+

𝛽𝑎 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑖 + 𝛽𝑐 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 + 𝛽𝑒 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠+

𝛽𝑒𝑎 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑖 + 𝛽𝑒𝑐 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖

or equivalently

𝑃𝑠𝑖 = inverse_logit[(𝛽0 + 𝑢0𝑠 + 𝑢0𝑖)+

𝛽𝑎 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑖 + 𝛽𝑐 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 + 𝛽𝑒 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠+

𝛽𝑒𝑎 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑖 + 𝛽𝑒𝑐 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖]

with model parameters 𝛽0, 𝛽𝑒, 𝛽𝑎, 𝛽𝑐, 𝛽𝑒𝑎, 𝛽𝑒𝑐, 𝜎𝑆, and 𝜎𝐼 .

In the GLMM literature, this would be called a binomial GLMM with two random

intercepts (for subjects and items), two level-1 predictors (𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡),

one level-2 predictor (𝑒𝑥𝑝𝑒𝑟𝑡) and two cross-level interactions (𝑒𝑥𝑝𝑒𝑟𝑡 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡,

𝑒𝑥𝑝𝑒𝑟𝑡 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡). To limit complexity, we do not consider random slopes, additional

predictors, or higher-level interactions.

Simulation function in R. The following R function simulates a full dataset structured

according to the design of our case study.

simulate <- function(n_subjects = 100, n_items = 50,

b_0 = 0.847, b_e = 1.350, b_a = -1.253, b_c = 2.603,

b_ea = 0.790, b_ec = -1.393,

sd_u0s = 0.5, sd_u0i = 0.5, ...){
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require(dplyr)

require(faux)

# simulate design

dat <- add_random(subject = n_subjects, item = n_items) %>%

add_between("subject", expert = c(1, 0), .prob = c(0.25, 0.75)) %>%

mutate(advice_present = rbinom(n(), 1, prob = 2/3)) %>%

mutate(advice_correct = if_else(advice_present == 1L,

rbinom(n(), 1L, prob = 0.8), 0L)) %>%

# add random effects

add_ranef("subject", u0s = sd_u0s) %>%

add_ranef("item", u0i = sd_u0i) %>%

# compute dependent variable

mutate(linpred = b_0 + u0i + u0s +

b_e * expert + b_a * advice_present + b_c * advice_correct +

b_ea * expert * advice_present + b_ec * expert * advice_correct) %>%

mutate(y_prob = plogis(linpred)) %>%

mutate(y_bin = rbinom(n = n(), size = 1, prob = y_prob))

dat

}

In the first four lines of the function definition, we set some default parameter values

(which we will explain in the next section) and load the packages we use to manipulate and

simulate data.3 In our case study, each subject (n_subjects in total) is assumed to respond to

each item (i.e., CT scan; n_items in total). Thus, the add_random command creates a

fully-crossed data.frame with n_subjects × n_items rows. We add a between-subject

effect with the add_between command, simulating that about 25% of subjects are experts.

The next two lines simulate that in 2
3 of trials, subjects will be presented with AI advice, and if

advice is presented, the advice will be correct in about 80% of cases (the variable

3 The faux package (DeBruine, 2023) contains useful functions when simulating factorial designs, including

random effects.
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advice_correct is always 0 when no advice is presented). Next, we simulate one random

effect for each subject (u0s) and for each item (u0i). As assumed by standard GLMMs, the

add_ranef function draws the random effects from a normal distribution with a mean 0 and a

standard deviation specified by the user. With all design variables done, we are ready to

simulate our model equation outlined in the last section. The linear predictor variable

linpred (𝜂 in the GLMM model equations) combines the predictor variables, random effects,

and model parameters as assumed by our model. We then transform the linear predictor with

the inverse-link function to compute y_prob, the probability that the subject correctly solved

the item (in R, the inverse-logit link is computed with plogis and the logit link with qlogis).

In the final step, we simulate the binary dependent variable y_bin (i.e., whether the subject

makes an accurate diagnostic decision for the CT scan) by – for each trial – drawing from a

Bernoulli distribution with success probability y_prob.

Step 3: Specify the population parameters

THEORY

Population parameters are all model parameters estimated in a GLMM, in particular

the regression coefficients of the fixed effects and the standard deviation of the random effects

(and the correlation between random effects in more complicated models). In the absence of

previous studies with the same design or pilot data, strategies to specify population parameters

will always require access to some domain knowledge. In our experience, research teams for

projects where tailored simulation-based sample size planning is necessary typically consist of

analysts (who are primarily responsible for study design and statistical analysis), and domain

experts (who often provide the original research question and are responsible for data

collection). In smaller projects, analysts and domain experts might be the same persons. In

these research settings, a broad review of the available literature typically plays a more

important role. Because most domain knowledge can only be expressed in unstandardized

measurement units of a specific application, we argue that unstandardized effect sizes are

usually preferable over standardized effect sizes for tailored simulation-based sample size

planning. The basic idea of all strategies is to quantify or visualize the data-generating process

implied by certain values of population parameters in an intuitive way that enables calibration
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of population parameters based on the available domain knowledge. Although we use

frequentist model estimation in our tutorial, many strategies demonstrated in this chapter are

inspired by research on monitoring the plausibility of model assumptions (Gelman et al.,

2020; Schad et al., 2021) and eliciting prior information (Bockting et al., 2024; Hartmann et

al., 2020; Mikkola et al., 2023; Stefan et al., 2022) in applied Bayesian statistics.

PRACTICE

When introducing the simulation function for our case study, we have used theoretically

plausible values as defaults for all model parameters (𝛽0, 𝛽𝑒, 𝛽𝑎, 𝛽𝑐, 𝛽𝑒𝑎, 𝛽𝑒𝑐, 𝜎𝑆, and 𝜎𝐼) but

have not talked about where these numbers came from. The starting point for all parameter

values was based on results from distantly related study designs in the literature. Additionally,

we had repeated discussions with our affiliated domain experts in radiology to check whether

our assumptions regarding participants’ diagnostic performance seemed plausible.

We now outline our main strategy to determine plausible parameter values for the fixed

effects (𝛽 parameters): Unfortunately, the model parameters in a binomial GLMM are hard to

interpret in isolation because first, the parameters are connected to the modeled probability via

the non-linear inverse-logit link, and second, we also have to consider the random effects. The

most simple interpretation, which allows us to ignore the random effects for now, works by

imagining a subject with average ability (𝑢0𝑠 = 0) responding to an item (i.e., CT scan) with

average difficulty (𝑢0𝑖 = 0). Then the model-implied probability that such a person solves such

an item accurately is given by:

𝑃(𝑌 = 1|X = x,U = 0) =

= inverse_logit[𝛽0 + 𝛽𝑎 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑖 + 𝛽𝑐 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖 + 𝛽𝑒 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠+

𝛽𝑒𝑎 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑖 + 𝛽𝑒𝑐 · 𝑒𝑥𝑝𝑒𝑟𝑡𝑠 · 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠𝑖]

In fact, we would only need the full equation if the subject is an expert and correct advice is

presented. In all other experimental conditions, some terms drop from the equation because

they are multiplied by 0. For example, the probability that a student with average ability solves
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an item with average difficulty when no advice is presented only requires the intercept:

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0) =

= inverse_logit[𝛽0]

We can revert this perspective by choosing plausible probability values based on domain

knowledge and deriving the parameter values implied by these probabilities for each

experimental condition.
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Table 2

Table 2. Assumed probabilities that an average subject solves an average item in each

experimental condition.

Experimental

condition 𝑃(𝑌 = 1 | X = x,U = 0) Implied equation

no advice,

student

0.70 𝑙𝑜𝑔𝑖𝑡 (0.70) = 𝛽0

no advice,

expert

0.90 𝑙𝑜𝑔𝑖𝑡 (0.90) = 𝛽0 + 𝛽𝑒

incorrect

advice,

student

0.40 𝑙𝑜𝑔𝑖𝑡 (0.40) = 𝛽0 + 𝛽𝑎

incorrect

advice, expert

0.85 𝑙𝑜𝑔𝑖𝑡 (0.85) = 𝛽0 + 𝛽𝑒 + 𝛽𝑎 + 𝛽𝑒𝑎

correct advice,

student

0.90 𝑙𝑜𝑔𝑖𝑡 (0.90) = 𝛽0 + 𝛽𝑎 + 𝛽𝑐

correct

advice, expert

0.95 𝑙𝑜𝑔𝑖𝑡 (0.95) = 𝛽0 + 𝛽𝑒 + 𝛽𝑎 + 𝛽𝑐 + 𝛽𝑒𝑎 + 𝛽𝑒𝑐

Table 2 shows our set of assumptions concerning the probability that an average

subject solves an average item for each experimental condition, as well as the corresponding

equations implied by the model. The table can be used to compute the implied values for the 𝛽

parameters, starting with the first equation and reinserting the computed 𝛽 values in all

following equations (b_0 stands for the intercept 𝛽0, b_e for the slope 𝛽𝑒, and so on):

b_0 <- qlogis(0.7)

b_e <- qlogis(0.9) - b_0

b_a <- qlogis(0.4) - b_0

b_ea <- qlogis(0.85) - b_0 - b_e - b_a
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b_c <- qlogis(0.9) - b_0 - b_a

b_ec <- qlogis(0.95) - b_0 - b_e - b_a - b_c - b_ea

c(b_0 = b_0, b_e = b_e, b_a = b_a, b_c = b_c, b_ea = b_ea, b_ec = b_ec)

b_0 b_e b_a b_c b_ea b_ec

0.8472979 1.3499267 -1.2527630 2.6026897 0.7901394 -1.3928518

It is always possible to double-check these computations by transforming the

parameter values back to probabilities, e.g.

𝑃(𝑌 = 1|𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0) =

= 𝑖𝑛𝑣𝑒𝑟𝑠𝑒_𝑙𝑜𝑔𝑖𝑡 [𝛽0 + 𝛽𝑒 + 𝛽𝑎 + 𝛽𝑐 + 𝛽𝑒𝑎 + 𝛽𝑒𝑐]

which we compute in R as:

plogis(b_0 + b_e + b_a + b_c + b_ea + b_ec)

[1] 0.95

This leaves us with the question on how to determine plausible values for the two

remaining model parameters (𝜎𝑆, and 𝜎𝐼) that are the standard deviations for the random

intercepts. For this, we introduce two more strategies in the following sections.

Examine insightful descriptive statistics

THEORY

The mathematical structure of GLMMs determines which patterns in data would be

produced by the model, if a specific set of values for the population parameters is specified.

The knowledge of how to simulate from a GLMM enables us to compute insightful descriptive

statistics that can be compared to available domain knowledge much more easily than the

opaque values of model parameters. For example, domain experts might not be able to directly

choose plausible values for the coefficients in a logistic regression model (which are measured

on the log-odds scale). However, they should be able to reason about the expected ratio of the

binary dependent variable in different experimental conditions, i.e., which relative frequency
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they expect to observe. The job of the analyst who is familiar with the mathematical structure

of the GLMM is to produce the model-implied value of the insightful descriptive statistic that

is expected by the domain expert. Although insightful descriptive statistics usually depend on

the model parameters in a non-linear way, it is not necessary to solve the exact relationship

mathematically. Instead, one can simply adjust the population parameters by trial and error

until the model-implied quantities produce the desired result.

PRACTICE

In the last section, we showed how we can derive the model-implied probability that a

subject with average ability solves an item with average difficulty for each experimental

condition. Although these derivations are straightforward, it is important not to misinterpret

their implications: In binomial GLMMs, the average probability to solve an item (averaged

across persons of varying ability and items of varying difficulty) is not equal to the probability

that a person with average ability solves an item with average difficulty (Fahrmeir et al., 2021).

The first perspective implies a so-called marginal interpretation, while the second one implies

a conditional interpretation.

For example, we determined the 𝛽 parameters in a way that corresponds to a desired

conditional probability of 0.95, that an expert with average ability solves an item with average

difficulty when presented with correct advice (the conditional perspective). However, even if

the model assumptions were true, we would not observe that 95% of experts responding to

items presented with correct advice from a big sample of subjects drawn from their natural

distribution of ability and items drawn from their natural distribution of difficulty (the marginal

perspective). How much the two probabilities differ depends on the standard deviations of the

random intercepts (the two probabilities are only equal if both standard deviations are be zero).

We want to use the model-implied observed proportion of correct diagnoses in each

experimental condition as an insightful descriptive statistic to determine plausible values for

the random effect standard deviations. We will simulate a large dataset (for which the observed

values of the descriptive statistic will be close to their model-implied true values) and simply

compute the relative frequency of correct diagnoses for each experimental condition.
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library(tidyverse)

set.seed(1)

dat <- simulate(n_subjects = 3000, n_items = 3000,

sd_u0s = 0.5, sd_u0i = 0.5)

dat %>%

mutate(condition = fct_cross(

factor(expert), factor(advice_present), factor(advice_correct))) %>%

mutate(condition = fct_recode(condition,

"student, no advice" = "0:0:0", "expert, no advice" = "1:0:0",

"student, incorrect advice" = "0:1:0", "expert, incorrect advice" = "1:1:0",

"student, correct advice" = "0:1:1", "expert, correct advice" = "1:1:1")) %>%

group_by(condition) %>%

summarize(relative_frequency = sum(y_bin) / n())

# A tibble: 6 x 2

condition relative_frequency

<fct> <dbl>

1 student, no advice 0.683

2 expert, no advice 0.881

3 student, incorrect advice 0.409

4 expert, incorrect advice 0.828

5 student, correct advice 0.883

6 expert, correct advice 0.938

We tried using these descriptive statistics to judge together with domain experts

whether our chosen values for the random effect standard deviations would produce data that

aligned with their expectations. Although the result was deemed plausible, these statistics

were not informative enough to determine a final set of plausible parameter values (e.g.,

doubling the standard deviations from 0.5 to 1 produces only minor changes in relative

frequency). For this reason, we will additionally look at insightful model-based quantities.
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Examine insightful model-based quantities

THEORY

Because GLMMs are complicated models, descriptive statistics alone are usually not

enough to specify plausible values for all model parameters. This is especially true for the

standard deviation of random effects that have non-linear (and often unexpected) effects on the

model-implied results. An important advantage of data simulation (where one has full control

over parameter values and sample sizes) is that one can produce insightful model-based

quantities that can never be directly observed in an actual empirical dataset. For example, in a

logistic model with random intercepts for participants, one can produce a visualization of the

implied distribution of the probability that a participant, on average, solves a cognitive task.

Although domain knowledge will probably not suffice to specify this distribution completely,

it should be possible to rule out implausible boundary conditions. For example, the domain

expert might deem it implausible that the 5% most able participants have a probability of more

than 0.99 to solve the difficult cognitive task.

PRACTICE

The discussed inequality of conditional and marginal effects in GLMMs (Fahrmeir et

al., 2021) makes their interpretation more difficult. One must be careful when specifying

parameter values based on previous studies or pilot data that use the marginal interpretation

(e.g., a pilot study providing an estimate of how often radiologists make an accurate diagnosis

based on brain scans). However, this does not mean that we cannot use the marginal

interpretation (average probability across persons and items) to inform plausible parameter

values: When parameter values have been selected, we can compute the implied marginal

distributions and compare this information to our domain knowledge. Then, we can iteratively

adjust the parameter values until we are satisfied with the implied distributions. In the last

section, we simulated a large dataset and computed descriptive statistics, the relative

frequencies of correct diagnoses, for each experimental condition. We will now use the

model-implied probability of each simulated data point (stored in the variable y_prob) to

visualize the whole model-implied marginal distribution of correct diagnoses for each

experimental condition.
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library(ggdist)

dat %>%

mutate(condition = fct_cross(

factor(expert), factor(advice_present), factor(advice_correct))) %>%

mutate(condition = fct_recode(condition,

"student, no advice" = "0:0:0", "expert, no advice" = "1:0:0",

"student, incorrect advice" = "0:1:0", "expert, incorrect advice" = "1:1:0",

"student, correct advice" = "0:1:1", "expert, correct advice" = "1:1:1")) %>%

ggplot(aes(x = y_prob, y = condition)) +

stat_histinterval(point_interval = "mean_qi", slab_color = "gray45",

breaks = "Sturges") +

scale_x_continuous(breaks = seq(0, 1, 0.1), limits = c(0, 1))
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Figure 1

Marginal distributions including means, 66% and 95% confidence intervals for all

experimental conditions.
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Figure 1 shows the model-implied marginal distributions, including the mean, 66% and

95% intervals. We can see that, indeed, the average probabilities (black dots) slightly differ

from the probabilities of average subjects and items considered previously. This difference

increases with the variability of the random effects. We can use plots like Figure 1 as a useful

tool to determine whether the specified standard deviations of the subject and item random

intercepts (𝜎𝑆 and 𝜎𝐼) are reasonable by comparing the ranges and overlap between conditions
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to domain knowledge.

Figure 2

Marginal distributions including means, 66% and 95% confidence intervals for all

experimental conditions while setting the standard deviation of item random intercepts to 0.01.
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For the next plot, we have set the item standard deviation to almost zero (𝜎𝐼 = 0.01).

This gives us a better way to see the variability between persons. As an example, Figure 2

reveals a number of implicit assumptions about the comparison between experts and students:

With incorrect advice, virtually all experts have a higher probability of making a correct

diagnosis compared to students when considering only items with average difficulty. In
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contrast, there is considerable overlap in probability between experts and students with no

advice and even higher overlap with correct advice. Patterns like these should be considered

carefully and discussed with the domain experts. Parameter values (𝛽 parameters, and 𝜎𝑆)

should be adjusted if the implications do not seem reasonable.

The final plot demonstrates that these plots are also useful for spotting standard

deviations that were specified too high. For Figure 3 we have set 𝜎𝑆 = 3 and 𝜎𝐼 = 3. This

implies that in each experimental condition, the probabilities that a subject solves an item are

overwhelmingly close to either 0 or 1 and nothing in between, which is not a plausible

assumption. These high standard deviations do not account for the inherent variability and

complexity of human performance. For example, the expectation that an expert with low

ability and incorrect advice would solve a difficult item with a probability close to zero is not

convincing.
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Figure 3

Marginal distributions including means, 66% and 95% confidence intervals for all

experimental conditions while setting the standard deviation of subject and item random

intercepts to 3.
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Iterate with domain expertise

THEORY

Tailored simulation-based sample size planning always requires access to domain

knowledge. However, gathering domain knowledge and the specification of population

parameter values is not always straightforward and can be better described as an iterative
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process, in which the plausibility of simulated data is repeatedly compared with the available

domain expertise. As a first step, dedicated domain experts (if available) can be interviewed to

elicit their domain knowledge about how the data of the planned study is expected to look.

Because most domain experts are no experts in statistical modeling and GLMMs, they often

struggle without further guidance to communicate their knowledge in a way that is useful

when specifying the parameters for data simulation. For this reason, we suggest that after an

initial interview, the analyst who is familiar with the structure of the GLMM selects an initial

set of insightful descriptive statistics and model-based quantities. Then, they reenter into an

iterative discussion with the domain experts where some set of population values are selected,

and the plausibility of resulting implied quantities is evaluated. The population parameters are

updated until the domain experts are satisfied with the result. During this process, the

monitored descriptive statistics and model-based quantities can be updated or extended to

capture as much available domain knowledge as possible. Even if no dedicated domain experts

are available, the basic principles stay the same except that initial parameter values are often

derived from a more extensive literature review. Descriptive statistics and model-based

quantities are still used to evaluate whether the implied assumptions about the data generating

process are plausible. Often, this judgment evolves over several iterations as the analyst

becomes more familiar with the model and the study design.4

PRACTICE

All parameter values in our present case study have been determined based on repeated

discussions with domain experts in radiology to validate our assumptions. Initially, we

reviewed the literature to establish a reasonable baseline performance rate for examining head

CT scans for intracranial hemorrhage. Existing studies indicate that radiologists typically

demonstrate high accuracies around 90%, while interns have been shown to perform below

80%, and medical students fall even shorter. For simplicity, we assumed plausible probability

4 Developing more effective strategies on how to elicit and visualize domain knowledge is currently an active area

of research, primarily in the context of Bayesian modeling (Bockting et al., 2024; Hartmann et al., 2020; Mikkola

et al., 2023; Stefan et al., 2022). We expect that future advances in this field will also be highly relevant for

tailored simulation-based sample size planning with frequentist models.
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values of .90 for experts and .70 for students, respectively. Our experts confirmed that these

values are realistic baselines for reviewing diverse head CT images without AI assistance.

Subsequently, we consulted several published papers investigating the effect of correct and

incorrect advice on decision-making performance in other settings. From their findings, we

inferred that both experts and students should benefit from correct and suffer losses from

incorrect advice. However, the magnitude of these effects should be substantially greater for

students, given their stronger reliance on advice compared to experts. We further validated the

plausibility of our estimated gains and losses with the collaborating radiologists until we

settled on the probabilities shown in Table 2.

Step 4: Estimate the statistical model

THEORY

At this point, the researcher is capable of producing a simulated dataset that is

comparable to the actual dataset to be collected in the planned study. The next step is to specify

how the statistical model shall be estimated in the actual study collected later. This requires

the selection of a statistical framework, a software package that is capable of estimating the

model class of interest, an estimation algorithm, and the specific model structure including all

fixed effects, random effects, and the model family of the dependent variable.

Note that this does not always mean that one will specify the same GLMM that was

used when specifying the data-generating process. On the one hand, using a simpler model for

data simulation than for model estimation can be a useful strategy in scenarios where making

plausible assumptions for complicated random effect structures and interactions is not feasible,

or the omitted components are expected to have small effects (Matuschek et al., 2017). On the

other hand, using a more complex model for data simulation than for model estimation can be

a useful strategy in scenarios where one has specific domain knowledge about aspects of the

data-generating process that are still difficult to estimate with the current state-of-the-art in

multilevel modeling. In fact, applying models that are more parsimonious than the true data

generating process can provide a better trade-off between type I error rates (or bias) and power

(or precision) in many scenarios (Matuschek et al., 2017).
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PRACTICE

In our case study, we use the lme4 R package (Bates et al., 2015), which is a

state-of-the-art tool for fitting frequentist GLMMs.5 For the current example, we simulate data

according to our model, in which 100 subjects respond to 50 items (we use set.seed to make

the simulation reproducible). However, for the sake of the exercise, we can imagine that this

would be real data resulting from our future experiment and think about how we would

analyze this data.

library(tidyverse)

set.seed(1)

dat <- simulate(n_subjects = 100, n_items = 50)

The lme4 package uses a special syntax for model specification. Our specific GLMM

is represented by the formula:

library(lme4)

f <- y_bin ~ 1 + expert + advice_present + advice_correct +

expert:advice_present + expert:advice_correct +

(1|subject) + (1|item)

The first two lines look similar to any linear model in R (general intercept indicated by

1; main effects indicated by variable names in the dataset; interactions indicated by

variable1:variable2). The third line specifies a random intercept for each subject

(1|subject) and for each item (1|item). The complete set of rules for the syntax is

outlined in Bates et al. (2015) and in the documentation of the lme4 package.

In lme4, a GLMM is fitted with the glmer function. By setting family =

"binomial", we request a binomial GLMM appropriate for our binary dependent variable

y_bin (the binomial GLMM uses the canonical logit link by default), which is defined as an

accurate (1) vs. inaccurate (0) diagnosis. We use the default estimation algorithm (see

?glmerControl for a list of alternative options).

5 For Bayesian GLMMs, the brms R package is currently the most prominent option (Bürkner, 2017).
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fit <- glmer(f, data = dat, family = "binomial")

We can inspect the estimates for all model parameters with the summary command:

summary(fit)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( logit )

Formula:

y_bin ~ 1 + expert + advice_present + advice_correct + expert:advice_present +

expert:advice_correct + (1 | subject) + (1 | item)

Data: dat

AIC BIC logLik deviance df.resid

4149.4 4201.6 -2066.7 4133.4 4992

Scaled residuals:

Min 1Q Median 3Q Max

-5.7669 0.2125 0.3046 0.4317 2.1056

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.3148 0.5611

item (Intercept) 0.1624 0.4029

Number of obs: 5000, groups: subject, 100; item, 50

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.0339 0.1103 9.374 < 2e-16 ***



SIMULATION-BASED SAMPLE SIZE PLANNING FOR GLMMS 38

expert 1.1849 0.2096 5.654 1.57e-08 ***

advice_present -1.3436 0.1206 -11.143 < 2e-16 ***

advice_correct 2.6154 0.1273 20.540 < 2e-16 ***

expert:advice_present 1.0589 0.2940 3.601 0.000317 ***

expert:advice_correct -1.8104 0.2915 -6.210 5.28e-10 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) expert advc_p advc_c exprt:dvc_p

expert -0.377

advic_prsnt -0.349 0.176

advic_crrct 0.023 0.001 -0.668

exprt:dvc_p 0.143 -0.448 -0.412 0.276

exprt:dvc_c -0.008 0.004 0.292 -0.435 -0.686

In the model output, the Estimate column in the Fixed effects table contains the

estimates for the 𝛽 parameters, while the Std.Dev. column in the Random effects table

contains the estimates for 𝜎𝑆 and 𝜎𝐼 .

Step 5: Compute the estimate

THEORY

In previous steps, we have defined the theoretical estimand, written a data simulation

function and specified how to estimate a GLMM using simulated data. The next step is to

specify how to compute a concrete point estimate of the theoretical estimand within the

framework of the fitted GLMM. For some research questions, the estimate corresponds with a

single regression coefficient. In more complicated scenarios, the estimate is computed from a

combination of coefficients. Beyond computing the point estimate, we have already discussed

that both hypothesis testing and interval estimation could be used to answer the research

question. The decision on testing or estimating is then followed by selecting the specific

statistical method that shall be applied to compute the HTs or CIs (e.g., compute HTs and CIs
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with the marginaleffects R package using the delta method).

PRACTICE

In the estimand section, we have translated a verbal description of our research

question into four probability statements that are specified outside of any specific statistical

model. For a concrete estimate within the context of our specified GLMM, we must compute

the following probability contrasts:

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

− 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

− 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

− 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

− 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

We have already discussed how to compute the involved probabilities in the section on

specifying population parameters. Plugging in the GLMM model equation produces an

equation for computing each contrast if all model parameters were known. When we want to

estimate the above contrasts based on observed data, the only difference is that model

parameters are not known and we instead use the corresponding parameter estimates.

We could use our knowledge of the structure of the GLMM to determine the exact

formula needed to compute the contrasts of interest and then plug in the parameter estimates

manually from the summary(fit) output. However, this would be tedious and we can use R to

compute this contrast without doing the math. Using the first contrast (correct advice, expert)

- (no advice, expert) as our example, we could apply the predict function of the lme4

package to compute the predicted probability for a correct diagnosis based on our fitted model,
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plug in the two sets of predictor values, and compute the difference between the two estimated

probabilities.

grid1 <- data.frame(advice_present = c(1, 0), advice_correct = c(1, 0),

expert = c(1, 1))

grid1

advice_present advice_correct expert

1 1 1 1

2 0 0 1

pred <- predict(fit, newdata = grid1, type = "response", re.form = NA)

pred

1 2

0.939292 0.901923

pred[1] - pred[2]

1

0.03736901

The argument type = "response" specifies that predictions are made on the

probability scale (instead of the log-odds scale of the 𝛽 parameters), while re.form = NA sets

all random effects to 0. We could use this method to compute point estimates for all four

contrasts that are part of our estimand. However, depending on whether we are interested in

hypothesis testing or parameter estimation, we also need a method to compute HTs or CIs. The

marginaleffects package (Arel-Bundock et al., Forthcoming) is a very flexible, increasingly

popular package to compute HTs and CIs for contrasts with a variety of statistical models,

including GLMMs estimated with lme4. First, we specify a grid of all combinations of

predictor variables and then compute estimated probabilities for all experimental conditions in

our experiment with the predictions function:
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library(tidyverse)

library(marginaleffects)

library(tinytable)

grid2 <- expand_grid(advice_present = 0:1,

advice_correct = 0:1, expert = 0:1)

grid2

# A tibble: 8 x 3

advice_present advice_correct expert

<int> <int> <int>

1 0 0 0

2 0 0 1

3 0 1 0

4 0 1 1

5 1 0 0

6 1 0 1

7 1 1 0

8 1 1 1

preds <- predictions(fit, newdata = grid2,

type = "response", re.form = NA)

print(preds, style = "tinytable") %>% theme_tt(theme = "resize")

The point estimates for all experimental conditions are reported in the Estimate

column. Note that the output also contains the two missing by design conditions that will

never be observed in the actual study (𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1

and 𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0). This is no problem as long as we

never interpret those estimates. Next, we use the estimated probabilities to compute the four

specific contrasts that are part of our estimand. For this, we must specify which rows in preds

have to be subtracted from each other. We will use the hypotheses function to compute our
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Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % advice_present advice_correct expert

0.738 0.02134 34.6 <0.001 867.2 0.696 0.779 0 0 0

0.902 0.01739 51.9 <0.001 Inf 0.868 0.936 0 0 1

0.975 0.00421 231.6 <0.001 Inf 0.966 0.983 0 1 0

0.954 0.01454 65.6 <0.001 Inf 0.925 0.982 0 1 1

0.423 0.03221 13.1 <0.001 128.6 0.360 0.486 1 0 0

0.874 0.02793 31.3 <0.001 711.4 0.819 0.928 1 0 1

0.909 0.00967 94.1 <0.001 Inf 0.890 0.928 1 1 0

0.939 0.01091 86.1 <0.001 Inf 0.918 0.961 1 1 1

Type: response

Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, advice_present, ad-

vice_correct, expert, y_bin

four contrasts of interest together with HTs and CIs. We use the default inference options of

the marginaleffects package that compute HTs and CIs based on the approximate delta method.

contrasts <- preds %>%

hypotheses(hypothesis = c(

"b8 = b2", # (correct advice, expert) - (no advice, expert)

"b2 = b6", # (no advice, expert) - (incorrect advice, expert)

"b7 = b1", # (correct advice, student) - (no advice, student)

"b1 = b5"), # (no advice, student) - (incorrect advice, student)

equivalence = c(0, 0))

print(contrasts, style = "tinytable") %>% theme_tt(theme = "resize")

The expression "b8 = b2" is special syntax to subtract the estimate in row number 8

from the estimate in row number 2 in the preds-output. The argument equivalence = c(0,

0) can be used to compute one-sided p-values, testing whether the contrast in the population is

smaller than 0 (p (NonSub) column) or greater than 0 (p (NonInf) column). The point

estimates for four contrasts are reported in the Estimate column. Note that to facilitate

interpretation, we arranged the contrasts in a way that we theoretically expect positive values
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Term Estimate Std. Error z Pr(>|z|) S 2.5 % 97.5 % p (NonSup) p (NonInf) p (Equiv)

b8=b2 0.0374 0.0162 2.31 0.021 5.6 0.00563 0.0691 0.989 0.0105 0.989

b2=b6 0.0282 0.0279 1.01 0.312 1.7 -0.02653 0.0830 0.844 0.1562 0.844

b7=b1 0.1717 0.0173 9.93 <0.001 74.8 0.13780 0.2056 1.000 <0.001 1.000

b1=b5 0.3145 0.0280 11.24 <0.001 95.0 0.25965 0.3693 1.000 <0.001 1.000

Type: response

Columns: term, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, statistic.noninf, statistic.nonsup,

p.value.noninf, p.value.nonsup, p.value.equiv

for all four of them.

Hypothesis testing. If we chose hypothesis testing for our case study, we would test a

combined null hypothesis 𝐻0 that consists of four separate null hypotheses:

𝐻01 : 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0) ≤

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

𝐻02 : 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0) ≤

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 1, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

𝐻03 : 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 1, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0) ≤

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

𝐻04 : 𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 0, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0) ≤

𝑃(𝑌 = 1|𝑎𝑑𝑣𝑖𝑐𝑒_𝑝𝑟𝑒𝑠𝑒𝑛𝑡 = 1, 𝑎𝑑𝑣𝑖𝑐𝑒_𝑐𝑜𝑟𝑟𝑒𝑐𝑡 = 0, 𝑒𝑥𝑝𝑒𝑟𝑡 = 0, 𝑢0𝑠 = 0, 𝑢0𝑖 = 0)

The combined null hypothesis 𝐻0 should only be rejected if all individual null hypotheses are

rejected (i.e., intersection-union setting; Dmitrienko & D’Agostino, 2013). In such cases, the

error probabilities do not accumulate, and we would waste power when correcting for multiple

tests.

With a standard significance level of 𝛼 = 0.05, we would not reject all four null

hypotheses (the p-value in the p (NonInf) column for the second hypothesis is not

significant) and therefore also not reject the combined null hypothesis for this particular

(simulated) dataset. Note that this decision would be wrong because we have simulated the

data such that the combined alternative hypothesis 𝐻1 is actually true in the population.

Interval estimation. If we chose parameter estimation for our case study, we would
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focus on the two-sided CIs of the four contrasts of interest. With a standard confidence level of

1 − 𝛼 = 0.95 plausible values are clearly in the positive range for the first, third, and fourth

contrast, while both negative and positive values seem plausible for the second contrast. Note

that due to the constrained range of the probability scale, the width of the CI differs between

the four contrasts (which is the expected behavior for binomial GLMMs). The smallest width

is observed for the first contrast (expert with correct advice vs. expert without advice), where

both underlying probabilities are close to 1. The largest width is observed for the fourth

contrast (student with incorrect advice vs. student without advice), where both underlying

probabilities are closer to 0.5.

Step 6: Perform repeated simulations

THEORY

Conducting all previous steps enables the analyst to 1) simulate a dataset, 2) estimate a

GLMM, and 3) compute HTs or CIs for estimands of interest, mirroring the analysis that will

later be conducted on the actual dataset of the planned study. To produce an estimate of power

or precision, the last step is to perform these previous steps repeatedly. On a conceptual level,

we first require a function that takes a sample size and a full set of population parameter values

as input. When planning for power, the function should return the p-value(s) of the HT(s) of

interest when conducted on the simulated dataset. When planning for precision, the function

should return the width of the CI(s) of interest. Second, we run this function repeatedly with

the same sample size and population parameters. Because fitting GLMMs can quickly become

time-consuming, it is recommended to use parallel computing, that is running simulations on

multiple cores of the computer at the same time to reduce total run time. Third, the results of

the repeated simulation are collected and aggregated. When planning for power, we compute

the relative frequency of (a) significant p-value(s) across repeated simulations. When planning

for precision, we compute the average width of the CI(s). Finally, we repeat the complete

simulation for different sample sizes to determine how big the sample must be in order to

achieve the targeted power or precision.
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PRACTICE

Wrapping the simulate function already constructed earlier, the helper function

sim_and_analyse performs all previous steps (simulate a dataset, fit a GLMM, compute

p-values and CIs) in a single command.

sim_and_analyse <- function(

formula_chr = "y_bin ~ 1 + expert + advice_present + advice_correct +

expert:advice_present + expert:advice_correct + (1|subject) + (1|item)",

contrasts = c("b8 = b2", "b2 = b6", "b7 = b1", "b1 = b5"), ...){

require(lme4)

require(marginaleffects)

require(tidyr)

# simulate data

dat <- simulate(...)

# fit model

model <- glmer(as.formula(formula_chr), data = dat, family = "binomial")

# compute contrasts

contr_df <- expand_grid(advice_present = 0:1, advice_correct = 0:1,

expert = 0:1)

predictions(model, newdata = contr_df, type = "response", re.form = NA) %>%

hypotheses(hypothesis = contrasts, equivalence = c(0, 0)) %>%

data.frame()

}

We use the future (Bengtsson, 2021) and furrr (Vaughan & Dancho, 2022) packages to

perform computations in parallel. First, we enable parallelization with the plan function and

specify how many parallel cores (“workers”) of our computer to use (users can find out the

maximum number of cores on their computer with the command

parallel::detectCores()), and set a seed to make the simulation reproducible.
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library(future)

plan("multisession", workers = 6)

set.seed(2)

The next code chunk specifies a simulation grid with different settings for both the

number of subjects (n_subjects) and the number of items (n_items), each combination

being repeated rep times. The more repetitions, the more accurately power and precision can

be estimated. We chose 300 repetitions for the data simulation at hand to strike a balance

between achieving a robust estimate and remaining computationally feasible. With the current

settings, this simulation takes several hours on a MacBook Pro from 2020 with M1 chip and 16

GB working memory. If you want to quickly experiment with the code yourself, a setting with

workers = 4 and rep = 5 should finish in less than 5 minutes, even on smaller machines.

library(furrr)

sim_result <- crossing(

rep = 1:500,

n_subjects = c(100, 150, 200, 250),

n_items = c(10, 30, 50, 70)

) %>%

mutate(res = future_pmap(., sim_and_analyse,

.options = furrr_options(seed = TRUE))) %>%

unnest(col = res)

The result of this computation is a data frame that contains the p-values and CIs of all

specified contrasts for each simulated dataset. In some iterations (predominantly in conditions

with small sample sizes), model estimation did not converge with the lme4 package. When the

model fails to converge, it means that the statistical model being fitted to the data failed to

reach a stable or valid solution during the estimation process. We do not remove these results

because non-convergence can also happen when analyzing the real data we plan to collect,

thus, we want to factor in this possibility to keep our simulation more realistic.
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Power results. For our exemplary combined hypothesis, power is defined as the

(long-run) percentage of simulations in which all four p-values of our individual hypotheses

are significant at the 𝛼 = 0.05 level. Based on our simulation outcomes, we compute a power

estimate for each combination of n_subjects × n_items (including 95% CIs) and visualize

the results with the following code.6

library(binom)

alpha <- 0.05

power <- sim_result %>%

pivot_wider(names_from = term, names_sep = "_",

values_from = estimate:p.value.equiv) %>%

group_by(n_subjects, n_items) %>%

summarise(

power = mean(`p.value.noninf_b1=b5` < alpha &

`p.value.noninf_b8=b2` < alpha & `p.value.noninf_b2=b6` < alpha &

`p.value.noninf_b7=b1` < alpha),

n_sig = sum(`p.value.noninf_b1=b5` < alpha &

`p.value.noninf_b8=b2` < alpha & `p.value.noninf_b2=b6` < alpha &

`p.value.noninf_b7=b1` < alpha),

n = n(),

ci.lwr = binom.confint(n_sig, n, method = "wilson")$lower,

ci.upr = binom.confint(n_sig, n, method = "wilson")$upper,

.groups = "drop")

power %>%

mutate(across(c(n_subjects, n_items), factor)) %>%

ggplot(aes(n_subjects, n_items, fill = power)) +

geom_tile() +

geom_text(aes(label = sprintf("%.2f \n [%.2f; %.2f]",

6 This code was inspired by the “Mixed Design Simulation” vignette of the faux package at

https://debruine.github.io/faux/articles/sim_mixed.html.

https://debruine.github.io/faux/articles/sim_mixed.html
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power, ci.lwr, ci.upr)),

color = "white", size = 4) +

scale_fill_viridis_c(limits = c(0, 1)) +

xlab("number of subjects") + ylab("number of items")

Figure 4

Simulation-based power estimates including 95% confidence interval of the case study for

different numbers of subjects and items, based on a significance level of 0.05.
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As should be the case, power estimates in Figure 4 increase with both the number of

subjects and the number of items. The CIs reported here indicate how precisely power was
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estimated by our simulation. Higher precision (which would be reflected in narrower CIs)

could be obtained by increasing the number of repetitions (rep) in the simulation. In practice,

data simulations are often run multiple times with adjusted combinations of sample sizes.

When running for the first time, it might be revealed that power is way too low (or much higher

than required) for some combinations of n_subjects and n_items. When narrowing down

the best combination that achieves sufficient power while at the same time striking a good

balance of how many subjects and items are practically feasible, later rounds of data

simulation will typically include a smaller grid of sample sizes combined with a higher

number of repetitions. This will assure high precision for the final power estimates, which are

then used for the sample size justification of the planned study.

When target power has been specified, the number of subjects and the number of items

in our study design can be traded against each other based on practical considerations.

Although it is recommended to justify the power (Lakens, 2022a), we adopt the common

heuristic to target a power of 0.8 to detect an effect of the expected size implied by our data

simulation. This could be achieved by collecting data from 250 subjects (about 25% of which

will be experts), each completing the same 50 items (with advice present in about 67% of

cases, which is correct in about 80% of cases with present advice). If collecting data from 250

subjects is not feasible, an alternative would be to recruit 200 subjects but increase the length

of the experiment to 70 items. However, 70 items might take too long to complete for the

radiologists participating in the study, who have a busy schedule. The simulation suggests that

it might also be possible to plan a shorter experiment with only 30 items if it is feasible to

recruit an even higher number of subjects (to be determined by additional rounds of power

analysis). Design parameters that also affect power, and which could be investigated in the

simulation to find a more optimal trade-off, are the ratio of experts to students, the frequency

of whether advice is presented at all, and whether it is correct or incorrect.7

7 An advanced alternative to our heuristic trade-off between subjects and items would be to explicitly optimize for

cost-efficient study designs using the mlpwr package (Zimmer et al., 2023). The package performs

simulation-based power analysis in a surrogate modeling framework that can evaluate power for a large grid of

design combinations more efficiently. The framework also requires users to write their own sim_and_analyse

function and can be considered a great extension on what we cover in our tutorial.
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Precision results. When planning for precision, one could monitor the width of all four

CIs at the same time. However, because the CIs of the four contrasts strongly differ in width, it

is not trivial to decide which width one should target when deciding on the appropriate sample

size. In contrast to planning for power, there are no common standards on how to specify the

targeted precision (Lakens, 2022a). For our example, we use a simple heuristic but we strongly

encourage readers to think about better alternatives that are appropriate in their own

applications. Our simulations show that the smallest CI can be expected for the first contrast

(expert with correct advice vs. expert without advice). The true contrast in probability for an

average expert and an average item in this condition is plogis(b_0 + b_e + b_a + b_c +

b_ea + b_ec) - plogis(b_0 + b_e) = 0.05. We want the width of this CI to be smaller

than 0.1. This would mean that if the point estimate happens to be close to the true value, the

plausible values inside of a 95% CI would all be positive.

Thus in our example, precision is defined as the (long-run) average width of a 95% CI

for the probability contrast between experts with correct advice and experts without advice. Of

course, a lower width implies better precision. Based on our simulation outcomes, we

compute the precision estimate for each combination of n_subjects × n_items (including

95% CIs) and visualize the results with the following code.

precision <- sim_result %>%

pivot_wider(names_from = term, names_sep = "_",

values_from = estimate:p.value.equiv) %>%

group_by(n_subjects, n_items) %>%

mutate(width = `conf.high_b8=b2` - `conf.low_b8=b2`) %>%

summarise(precision = mean(width),

ci.lwr = t.test(width)$conf.int[1],

ci.upr = t.test(width)$conf.int[2],

.groups = "drop")

precision %>%

mutate(across(c(n_subjects, n_items), factor)) %>%

ggplot(aes(n_subjects, n_items, fill = precision)) +
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geom_tile() +

geom_text(aes(label = sprintf("%.2f \n [%.2f; %.2f]",

precision, ci.lwr, ci.upr)),

color = "white", size = 4) +

scale_fill_viridis_c(limits = c(0, 0.3), direction = -1) +

guides(fill = guide_legend(reverse=FALSE))
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Figure 5

Simulation-based precision estimates (expected width of confidence intervals) including 95%

confidence interval of the case study for different numbers of subjects and items, based on a

confidence level of 0.95.
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As should be the case, precision estimates in Figure 5 increase (i.e., average width of

CI decreases) with the number of included subjects and items. The CIs reported here indicate

how precisely the expected width of the CI for our focal contrast was estimated by our

simulation. Applying our simple heuristic of targeting an expected CI width that is smaller

than 0.1, we see the same trade-off between the number of subjects and the number of items as
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with planning for power. We could either choose 100 subjects and 30 items or 250 subjects

and 10 items. Note that our simple heuristic for determining sample size in the planning for

precision scenario was quite liberal. This is reflected in the result that we would need a smaller

sample size than in the planning for power scenario. With a more conservative precision

target, the result is generally the opposite: As a rule, precise parameter estimates usually

require bigger samples than null hypothesis testing.

Step 7 (optional): Conduct sensitivity analysis

In our case study, we have performed simulation-based sample size planning from a

single set of parameter values that reflect our assumptions of an expected effect size. Instead

of extracting this expected effect size from meta-analyses or pilot data, which has been the

main focus of previous tutorials (e.g., Kumle et al., 2021), we have demonstrated some

strategies to determine plausible parameter values in GLMMs based on domain knowledge.

When sample sizes are chosen based on the results of our simulation-based power analysis, a

future study will be informative to reject the null hypothesis if an effect of our expected size is

present (or estimate the effect with satisfying precision). However, if the true effect is indeed

smaller, power (or precision) will be lower, and the study might not be sufficiently informative.

A common, more conservative strategy for sample size justification is to perform sample size

planning for the smallest effect size of interest (SESOI). An effect smaller than the SESOI

would be considered too small to be interesting or practically meaningful, even if the effect is

not actually zero (King, 2011; Lakens, Scheel, et al., 2018). Unfortunately, specifying a

plausible SESOI is a challenging task (for strategies on how to specify a SESOI, see Lakens

(2022a), Riesthuis (2024), or Lakens (2022b)). When domain knowledge or formal theories

about the research topic of interest are too vague to specify a meaningful SESOI, it is still

recommended to demonstrate power or precision for different effect sizes in a sensitivity power

analysis (Lakens, 2022a). By simulating power (or precision) for different effect sizes (in

addition to the different number of subjects and items), one can make sure that power (or

precision) would still be sufficient to detect smaller effect sizes than our expected effect or at

least get an impression of how strongly power (or precision) depends on the size of the true

effect. For our case study that investigates combined hypotheses in a GLMM modeling
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framework, sensitivity analysis would require manually specifying additional sets of plausible

parameter values that reflect scenarios with smaller or larger differences between groups with

respect to our specific research question. Power (or precision) could then be simulated for

several of these scenarios (across different numbers of subjects and items, as considered

earlier). In steps 2 and 4 of the tutorial, we have briefly discussed scenarios where the applied

statistical model is more (or less) parsimonious than the data-generating process. Sensitivity

analysis can be used to assess the consequences of a mismatch by investigating different

combinations of data-generating processes and statistical models. Such extended simulations

can be a great resource to make an informed decision about the concrete model to estimate for

the planned study where the true data-generating process is unknown. Although

recommended, we do not present a sensitivity analysis for our case study to keep the length of

the tutorial manageable.

Conclusion and outlook

In this tutorial, we provided a step-by-step guide on how to perform tailored

simulation-based sample size planning for GLMMs based on a concrete case study. To

conclude, we want to give an outlook on five developments regarding the future role of

simulation-based sample size planning in experimental research:

1. As experimental designs become more complex and the appropriate flexible statistical

frameworks, like GLMMs, become more popular, there is an ever growing need for

simulation-based sample size planning in experimental research.

2. The ability to conduct simulation-based sample size planning becomes an increasingly

valuable skill that should be taught to experimental researchers. By incorporating such

training into research methods courses and workshops, researchers can improve the

quality of their experimental designs and enhance the rigor of their studies. The need to

reason about how to simulate plausible data that is in line with the research hypothesis,

while not violating domain expertise on how plausible data should look, might also

contribute to planning more insightful studies that can answer more precise research

questions (Yarkoni, 2022).
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3. Given the significant disconnect between the amount of effort required to perform

tailored simulation-based sample size planning and the perceived effort estimated by

researchers and collaborators in experimental research, there is a need to address the

mismatch in effort perception. Many researchers request simulation-based power

analyses from statisticians or methodological experts without fully comprehending the

complexity and time-consuming nature of these tailored simulations. Therefore, it is

crucial to raise awareness about the effort involved to ensure realistic expectations and

effective collaboration with methodological experts.

4. Tailored data simulations and power analyses are not mere technicalities; they are

valuable research contributions that deserve adequate recognition in experimental

research. Their importance can be reflected by highlighting the simulation work in a

publication or even allocating them a separate publication, or incorporating them as a

significant component of stage 1 preregistered reports (Chambers & Tzavella, 2022).

5. Simulation-based sample size planning aligns well with the principles of Open Science

and preregistration and could be further integrated. When researchers have access to

simulated data based on their pre-specified model, analyzing the collected dataset

becomes straightforward and unambiguous. By preregistering their simulation-based

sample size plan, researchers enhance the transparency and accountability of their

experimental procedures, contributing to the credibility and reproducibility of research.
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